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Toward a Test Theory for Assessing

Student Understanding

Robert J. Mislevy, Kentaro Yamamoto, and Steven Anacker

Educational Testing Service '

Abstract

. The view of learning that underlies standard test theory is
inconsistent with the view rapidly emerging from cognitive and educational
psychology. Learners become more competent not simply by learning more
facts and skills, but by reconfiguring their knowledge; by “chunking”
information to reduce memory loads; and by developing strategies and
models that help them discern when and how facts and skills are important.
Neither classical test theory nor item response theory (IRT) is designed to
inform educational decisions conceived from this perspective. This paper
sketches the outlines of a test theory built around models of student
understanding, as inspired by the substance and the psychology of the
domain of interesi. The ideas are illustrated with a simple numerical
example based on Siegler’s balance beam tasks. Directions in which the

approach must be developed to be broadly useful in educational practice are
discussed.
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Background

When schooling became mandatory at the turn of the century, educators suddenly
faced selection and placement decisions for unprecedented numbers of students, displaying
the diversity of abilities and backgrounds that individuals bring to schooling (Glaser,
1981). Numbers of correct answers to multiple-choice test items were used to rank
students according to their overall proficiencies in dom.ains of tasks. These rankings were
used in turn to predict students’ success in fixed educational experiences.

Classical test theory (CTT) emerged when Spearman (e.g., 1907) applied statistical
methods to study how reliable estimates of this overall proficiency would be from different
test forms that might be constructed for the purpose. Extensions of this work led over the
years to a vast armamentarium of techniques for building tests and making decisions with
test scores (Gulliksen, 1950); to an axiomatic foundation for statistical inference about test
scores (Lord, 1959; Lord & Novick, 1968; Novick, 1966); and to sophisticated techniques
for partitioning test score variance according to facets of items, persons, and observational
settings (Cronbach, Gleser, Nanda, & Rajaratnam,1972). It is important to note that in all
this work, the object of inference is overall proficiency—the test score, observed or
expected— in terms of numbers of correct responses in a domain of items.

Item response theory (IRT; see Hambleton, 1989, for an overview) represented a
major practical advance over CTT by modeling probabilities of correct item response in
terms of an unobservable proficiency variable. IRT solves many problems that were
difficult under CTT, in equating, test construction, and adaptive testing. Advanced
statistical methods have been brought to bear on inferential problems in IRT, including
sophisticated estimation algorithms (e.g., Bock & Aitkin, 1981), techniques from missing-
data theory (Mislevy, in press-a), and Bayesian treatments of uncertainty in models and
parameters (Lewis, 1985; Mislevy & Sheehan, 1990; Tsutakawa & Johnson, 1988). The
underlying psychological model remains quite simple, however; as in CTT, the focus
remains on overall proficiency in a domain of items. From the perspective of IRT, two
students with the same overall proficiency are indistinguishable.

As useful as standard tests and standard test theory have proven in large-scale
evaluation, selection, and placement problems, their focus on who is competent and how
many items they answer can fall short when the goal is to improve individuals’
competencies. Glaser, Lesgold, and Lajoie (1987) point out that tests can predict failure
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without an understanding of what causes success, but intervening to prevent failure and
enhance competence requires deeper understanding.

The past decade has witnessed considerable progress toward the requisite
understanding. Psychological research has moved away from the traditional laboratory
studies of simple (even random!) tasks, to tasks that better approximate the meaningful

learning and problem-solving activities that engage people in real life. Studies comparing

the ways experts differ from novices in applied problem-solving in domains such as
physics and trouble-shooting (e.g., Chi, Feltovich & Glaser, 1981) reveal the central

importance of knowledge structures—networks of concepts and interconnections among
them—that impart meaning to patterns in what one observes and how one chooses to act.

The process of learning is to a large degree expanding these structures and, importantly,

reconfiguring them to incorporate new and qualitatively different connections as the level of

understanding deepens. Educational psychologists have begun to put these findings to
work in designing both instruction and tests (e.g., Glaser et al., 1987; Greeno, 1976;
Marshall, 1985, in press). Again in the words of Glaser, Lesgold, and Lajoie (1987),

“Achievement testing as we have defined it is a method of indexing stages of
competence through indicators of the level of development of knowledge,
skill, and cognitive process. These indicators display stages of performance
that have been attained and on which further learning can proceed. They
also show forms of error and misconceptions in knowledge that result in
inefficient and incomplete knowledge and skill, and that need instructional
attention.” (p.81)

Paraphrasing Ohlsson and Langley (1985), Clancey (1986) summarizes the shift in

perspective: “[to] describing mental processes, rather than quantifying performance with

respect to stimulus variables; describing individuals in detail, not just stating generalities;
and giving psychological interpretation to qualitative data, rather than statistical treatment to

numerical measurements” (p. 391).

An Approach to Modeling Student Understanding

The modeling approach we are beginning to pursue can be encapsulated as follows:

“Standard test theory -'volved as the application of statistical theory with a
simple model of ability that suited the decision-making environment of mass
educational systems. Broader educational options, based on insights into
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the nature of learning and supported by more powerful technologies,
demand a broader range of models of capabilities—still simple compared to
the realities of cognition, but capturing patterns that inform a broader range
of instructional alternatives. A new test theory can be brought about by
applying to well-chosen cognitive models the same general principles of .
statistical inference that led to standard test theory when applied to the
simple model.” (Mislevy, in press-b).

The approach begins in a specific application by defining a universe of student
models. This “supermodel” is indexed by parameters that signify distinctions between
states of understanding. Symbolically, we shall refer to the (typically vector-valued)
parameter of the student-model as 1. A particular set of values of 1} specifies a particular
student model, or one particular state among the universe of possible states the supermodel
can accommodate. These parameters can be qualitative or quantitative, and qualitative
parameters can be unordered, partially ordered, or completely ordered. A supermodel can
contain any mixture of these types. Their nature is derived from the structure and the

psychology of the learning area, the idea being to capture the essential distinctions among
students.

Any application faces a modeling problem, an item construction problem, and an
inference problem.

The modeling problem is delineating the states or levels of understanding in a
learning domain. In meaningful applications this might address several distinct strands of
learning, as understanding develops in a number of key concepts, and it might address the
connectivity among those concepts.! Symbolically, this substep defines the structure of
p(xIn), where x represents observations. Obviously any model will be a gross
simplification of the reality of cognition. A first consideration in what to include in the
supermodel is the substance and the psychology of the domain: Just what are the key

1 A particularly interesting special case occurs when the univers of student models can be expressed a
performance models (Clancey, 1986). A performance model consists a knowledge base and manipulation
rules that can be run on problems in a domain of interest. A particular model can contain both knowledge
and production rules that are incorrect or incomplete; the solutions it produces will be correct or incorrect in

identifiable ways. Here the parameter 1} specifics features of performance models.




concepts? What are important ways of understanding and misunderstanding them? What
are typical paths to competence? A second consideration is the so-called grain-size
problem, or the level of detail at which student-models should differ. A major factor in
answering this question is the decision-making framework under which the modeling will
take place. As Greeno (1976) points out, “It may not be critical to distinguish between
models differing in processing details if the details lack important implications for quality of
student performance in instructional situations, or the ability of students to progress to
further stages of knowledge and understanding.”

The item construction problem is devising situations for which students who differ
in the parameter space are likely to behave in observably different ways. The conditional
probabilities of behavior of different types given the unobservable state of the student are
the values of p(xin), which may in turn be modeled in terms of another set of parameters,
say B. The p(xin) values provide the basis for inferring back about the student state. An
elernent in x could contain a right or wrong answer to a multiple-choice test item, but it
could instead be the problem-solving approach regardless of whether the answer is right or
wrong, the quickness of a responding, a characteristic of a thirk-aloud protocol, or an
expert’s evaluation of a particular aspect of the performance. The effectiveness of an item
is reflected in differences in conditional probabilities associated with different parameter
configurations, so an item may be very useful in distinguishing among some aspects of
potential student models but useless for distinguishing among others. Tatsuoka (1989)
demonstrates the relationship between item construction and inference about students’
strategies for subtracting mixed numbers.

The inference problem is reasoning from observations to student models. The
model-building and item construction steps provide 1} and p(xin). Let p(n) represent
expectations about 1] in a population of interest—possibly non-informative, possibly based
on expert opinion or previous analyses. Bayes theorem can be employed to draw
inferences about 1} given x via p(nix) e p(xin) p(m). Thus p(Mix) characterizes belief
about a particular student’s model after having observed a sample of the student’s behavior.
Practical problems include characterizing what is known about P so as to determine p(xin),
carrying out the computations involved in determining p(n)/x), and, in some applications,
developing strategies for efficient sequential gathering of observations. As we have noted,
analogous problems have been studied in standard test theory, and the solutions there,
because they are applications of general principles of statistical inference, generalize to



models built around alternative psychological models. The models are more realistic and
more ambitious, but the formalism is identical.2

Previous Research

Research relevant to this approach has been carried outin a wide variety of fields,
including cognitive psychology, the psychology of mathematics and science education,
artificial intelligence (AI) work on student modeling, test theory, and statistical inference.
Cognitive scientists have suggested general structures such as “frames” or “schemas” that
can serve as a basis for modeling understanding (e.g., Minsky, 1975; Rumelhart, 1980),
and have begun to devise tasks that probe their features (e.g., Marshall, 1989, in press).
Researchers interested in the psychology of learning in subject areas such as proportional
reasoning have focused on identifying key concepts, studying how they are typically
acquired (e.g., in mechanics, Clement, 1982; in ratio and proportional reasoning, Karplus,
Pulos, & Stage, 1983), and constructing observational settings that allow one to infer
students’ understanding (e.g., van den Heuvel, 1990; McDermott, 1984). We make no
effort here to review these li:eratures, but point out that our work can succeed only by
building upon their foundations. Our potential contribution would be to the structures and
mechanics of model-building and inference. The following sections briefly mention some
important work along these lines from test theory and statistics.

Modeling Student Behavior

The standard models of educational measurement are concerned solely with
examinees’ tendencies to answer items correctly—that is, their overall proficiency.
Recently, however, models that focus on patterns other than overall proficiency have begun

to appear the test theory literature. Some examples that are relevant to educational
applications are listed below.

2 Advocates of student modeling emphasize the qualitative aspects of student models. Our approach is
compatible with this view, as it is possible to build universes of qualitative models, indexed by parameters
that distinguish their features. Our knowledge about a particular student's model is imperfect, however. It
can be expressed in terms of probabilitics expressing the plausibility of various models, given what has
been obscrved. Probabilities are quantitative, and admit to a calculus of manipulation. We might tiius
employ a quantitative model for our (imperfect) knowledge about qualitative student models.




1. Mislevy and Verhelst’s (1990) mixture models for item responses when different
examinees follow different solution strategies or use alternative mental models. When a
single IRT model cannot capture key distinctions among examinees, it may suffice to posit
qualitatively distinct classes of examinees and use IRT models to summarize distinctions
among examinees within these classes.

2.  Wilson’s (1989b) Saltus model for characterizing stages of conceptual development.
This model parameterizes the differential patterns of strength and weakness expected as
learners progress through successive conceptualizations of a domain.

3. Falmagne’s (1989) and Haertel’s (1984) latent class models for Binary Skills.
These models are intended for domains in which competence can be described by the
presence or absence of several (possibly complex) elements of skill or knowledge, and
observational situations can be devised that demand various combinations of these skills.

Also see Paulson (1986) for an alternative use of latent class modelling in cognitive
assessment.

1. Embretson’s (1985) multicomponent models for integrating item construction and
inference within a unified cognitive model. The conditional probabilities of solution steps
given a multifaceted student model are given by IRT-like statistical structures.

5. Tatsuoka’s (1989) Rule space analysis. Tatsuoka uses a generalization of IRT
methodology to define a metric for classifying examinees based on likely patterns of item
response given patterns of knowledge and strategies.

6. Yamamoto’s (1987) Hybrid model for dichotomous responses. The Hybrid model
characterizes an examinee as either belonging to one of a number of classes associated with
states of understanding, or in a catch-all IRT class. This approach might be useful when
certain response patterns signal states of understanding for which particular educational
experiences are known to be effective. lastructional decisions are triggered by these

patterns if they are detected, but by overall proficiency when no more targeted action can be
provided.

7. Masters and Mislevy’s (in press) and Wilson’s (1989a) use of the Partial Credit
rating scale model to characterize levels of understanding, as evidenced by the nature or
approach of a performance rather than its correctness. These applications incorporate into a
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probabilistic framework the cognitive perspective underlying Biggs and Collis’s (1982)
SOLO taxonomy for describing salient qualities of performances.

These are the rudiments of models upon which concept-referenced achievement
measures can be based. Applications to date have been fairly limited, and most have
addressed one-to-many relationships between an underlying knowledge state and
observable behavior. That is, a single (possibly unordered or multifaceted) variable has
been used to characterize examinees, and performance on all items is modeled in terms of
this variable. What is lacking from the point of view of the educator is the fact that
meaningful real world tasks are rarely segregated into these neat little sets. Rather, they
often involve multiple concepts, connections among larger concepts, and transformations
among alternative representations of a domain. While the simple tasks that characterize
one-to-many domains are essential at early stages of leaning, more complex tasks that
involve multiple concepts in many-to-many relationships are needed to promote the

integration among concepts that form the core of what is often called “higher-level
learning.”

Inference Networks

Recent developments in the context of probability-based inference networks
(Lauritzen & Spiegelhalter, 1988; Pearl, 1988) offer a capability for integrating conceptual
models of the type described above. These probability-based structures are attractive for
educational measurement because they permit a coherent extension of the modeling
approach and inferential logic of the new cognitive-assessment models mentioned above.

To show how the approach might be applied in the educational setting, we first discuss an
application in the setting of medical diagnosis.

MUNIN is an inference network that organizes knowledge in the domain of
electromyography—the relationships among nerves and muscles. Its function is to
diagnose nerve/muscle disease states. The interested reader is referred to Andreassen,
Woldbye, Falck, and Andersen (1987) for a fuller description. The prototype discussed in
that presentation and used for our illustration concerns a single arm muscle, with concepts
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represented by twenty-five nodes and their interactions represented by causal links.3 A
graphic representation of the network appears in Figure 1.

[Figure 1 about here]

The rightmbst column of nodes in Figure 1 concerns outcomes of potentially
observable variables, such as symptoms or test results. These outcomes are the X vector in
our earlier notation. The middle layers are “pathophysiological states,” or syndromes.
These drive the probabilities of observations. The leftmost layer is the underlying disease
state, including three possible diseases in various stages, no disease, or “Other"—a
condition not built into in the system. These states drive the probabilities of syndromes. It
is assumed that a patient’s true state can be adequately characterized by values of these
disease and syndrome states—our 1 parameter. Paths indicate conditional probability
relationships, which are to be determined either logically, subjectively, purely empirically,
or through model-based statistical estimation. In particular, the paths ending at observables
represent p(xin). Note that the probabilities of observables depend on some syndromes,
but not others. The lack of a path signifies conditional independence. Note also that a
given test result can be caused by different disease combinations.

As a patient enters the clinic, the diagnostician’s state of knowledge about him is
expressed by population base rates, or p(n). This is depicted in Figure 1 by bars that
represent the base probabilities of disease and syndrome states. Base rates of observable
test results are similarly shown. Tests are carried out, one at a time or in clusters, and with
each result the probabilities of disease states are updated. The expectations of tests not yet
given are calculated, and it can be determined which test will be most informative in
identifying the disease state. Knowledge is thus accumulated in stages, from p(n}) to
p(nix}) after observing the first subset of tests, to p(nix;,x2) after the second, and so on,
with each successive test selected optimally in light of knowledge at that point in time.
Figure 2 illustrates the state of knowledge after a number of electromyographic test results
have been observed. Observable nodes with results now known are depicted with shaded
bars representing observed values For them, knowledge is perfect. The implications of
these results have been propagated leftward to syndromes and disease states, as shown by

3 The ESPRIT team has generalized the application to address clusters of interrelated muscles in a network
containing over a thousand nodes.




distributions that differ from the base rates in Figure 1. These values guide the decision to .
test further or initiate a treatment. Finally, updated beliefs about disease states have been
propagated back toward the right to update expectations about the likely outcomes of test
not yet administered. These expectations, and the potential they hold for further updating
knowledge about the disease states, guide the selection of further tests.

[Figure 2 about here]

Inference Networks in the Educational Setting

To see how the ideas underlying MUNIN apply to the educational setting. consider
the following analogy:

Medi o Educational Applicati

Observable symptoms, medical tests Test items, verbal protocols, teachers’

ratings of levels of understanding,
solution traces

Disease states, syndromes States or levels of understanding of

key concepts, available strategies

Architecture of interconnections based
on medical theory

Conditional probabilities given by
physiological models, empirical data,
expert opinion

Architecture of interconnections based
on cognitive and educational theory

Conditional probabilities given by
psychological models, empirical data,
expert opinion

The definitions of key concepts will be guided by theorized and observed stages of
learning in the area, and the connections with observables will be expressed through
measurement models such as those discussed above. The initialization of the probabilities
in the network will be accomplished by one or more methods: clinical analysis, with skilled
interviewers assessing in detail the nature of students’ understandings and related these
understandings to task performances; statistical analysis of data concerning selected models




for portions of the larger network (Mislevy & Verhelst, 1990); or theoretical analysis, in
which logic or theory provides expectations for outcomes under hypothesized cognitive
states. After the initialization phase, connections can be updated periodically with the larger
amounts of less precise data that will be accumulated as students provide information about
the adequacy of the relationships embodied in the network and the accuracy of the baseline
and conditional probabilities.

A Numerical Example
Siegler’s balance beam tasks

Kuhn (1970) emphasizes the central role that exemplars, or small, archetypical
examples, play in science. Textbook examples are the vehicle through which students are
acculturated to the concepts and relationships of a particular way of viewing a class of
phenomena—-a paradigm, in Kuhn’s words. They function almost like parables or
morality tales. New paradigms are introduced with new exemplars, that introduce new
concepts, highlight differences between the new paradigm and the old, and demonstrate
how the new way of thinking solves problems the old way could not. Modeling the states
of the electron in the hydrogen atom possesses this status in quantum mechanics.
Explaining children’s understanding of balance beam problems, an exemplar from
developmental psychology originated by Piaget, is approaching the same status in test
theory (e.g., Kempf, 1983, Mislevy, in press-b, and Wilson, 1989b). Robert Siegler’s
balance beam tasks yield data that are, on the surface, indistinguishable from standard test
data, but there are two key distinctions:

1. What is important about examinees is not their overall probability of answering
items correctly, but their (unobservable) state of understanding of the domain.

2. Children at less sophisticated levels of understanding initially get certain problems
right for the wrong reasons. These items are more likely to be answered wrong at
intermediate stages, as understanding deepens! They are bad items by the standards
of classical test theory and IRT, because probabilities of correct response do not
increase monotonically with increasing total test score. From the perspective of the
developmental theory, however, not only is this reversal expected, but it plays an
important role in distinguishing among children with different ways of thinking
about the problems.




Artempting to study children’s reasoning in a manner less subjective than Piaget’s
unstructurec interviews, Siegler (1981) devised a series of balance beam tasks like the one
illustrated in Figure 3. Varying numbers of weights are placed at varying locations on a
balance beam. The child predicts whether the beam will tip to left, to the right, or remain in
balance. Piaget’s analysis of children’s behavior on balancing tasks (Inhelder & Piaget,
1958), posits that a child will respond in accordance with his or her stage of understanding.
The usual stages through which children progress can be described in terms of successive
acquisition of the rules listed below.

{Figure 3 about here]

Rule I: If the weights on both sides are equal, it will balance. If they are not equal, the
side with the heavier weight will go down. (Weight is the “dominant dimension,”
because children are generally aware that weight is important in the problem earlier
than they realize that distance from the fulcrum, the “subordinate dimension,” also
matters.)

Rule II: If the weights and distances on both sides are equal, then the beam will balance.
If the weights are equal but the distances are not, the side with the longer distance
will go down. Otherwise, the side with the heavier weight will go down. (A child
using this rule uses the subordinate dimension only when information from the
dominant dimension is equivocal.)

Rule III: Same as Rule I, except that if the values of both weight and length are unequal
on both sides, the child will “muddle through” (Siegler, 1981, p.6). (A child using
this rule now knows that both dimensions matter, but doesn’t know just how they
combine. Responses will be based on a strategy such as guessing.)

Rule IV: Combine weights and lengths correctly (i.e., compare torques, or products of
weights and distances).

It was thus hypothesized that each child could be classified into one of five stages—
the four characterized by the rules, or an earlier “preoperational” stage in which neither
weight nor length are thought to bear any systematic relationship to the action of the beam.

Siegler developed six types of problems listed below to distinguish among children
at different stages of reasoning. (See Figure 4 for an example of each.)

11 tag
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Equal problems (E), with matching weights and lengths on both sides.
Dominant problems (D), with unequal weights but equal lengths.
Subordinate problems (S), with unequal lengths but equal weights.

Conflict-dominant problems (CD), in which one side has greater weight, the other has
greater length, and the side with the heavier weight will go down.

Conflict-subordinate problems (CS), in which one side has greater weight, the other has
greater length, and the side with the greater length will go down.

Conflict-equal problems (CE), in which one side has greater weight, the other has greater
length, and the beam will balance.

[Figure 4 about here]

Table 1 shows the probabilities of correct response that would be expected from
groups of children in different stages, if their responses were in complete accordance the
hypothesized rules. Scanning across the rows reveals how the probability of a correct
response to a given type of item does not always increase as level of understanding
increases. For example, Stage II children tend to answer CD items right for the wrong
reason, while Stage III children, now aware of a conflict, flounder.

[Table 1 about here]

A latent class model for balance beam tasks

If the theory were perfect, the columns in Table 1 would give probabilities of
correct response to the various types of items from children at different stages of
understanding. Observing a correct response to an S item, for example, would eliminate
the possibility that the child was in Stage I. But because the model is not perfect4, and
because children make slips and lucky guesses, any response could be observed from a
child in any stage. A latent class model (Lazarsfeld, 1950) can be used to express the

4 This model assumes that the five states are exhaustive and mutually exclusive. Alternative models, such

as those of Tatsuoka and Yamamoto mentioned carlier, could be used to relax these restrictions.
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structure posited in Table 1 while allowing-fof some “noise” in real data (see Appendix for
details). Instead of expecting incorrect responses with probability one to S items from
Stage I children, we might posits some small fraction of correct answers—p(S correctl
Stage=I). Similar probabilities of “false positives” can be estimated for other cells in Table
1 containing 0’s. In the same spirit, probabilities less than one, due to “false negatives,”
can be estimated for the cells with 1’s. Note that inferences cannot be as strong when these
uncertainties are present; a correct response to an S item still suggests that a child is
probably not in Stage I, but no longer is it proof positive.

Expressing this model in the notation introduced above, 1| represents stage
membership, x represents item responses, and p(xIn)) are conditional probabilities of
correct responses to items of the various types from children in different stages—a noisy
version of Table 1. The proportions of children in a population of interest at the different
stages are p(1}), and the probabilities that convey our knowledge about a child’s stage after
we have observed his responses are p(1!x). '

Siegler created a 24-task test comprised of four tasks of each type. He collected
data from 60 children, from age 3 up through college age, at two points in time, for a total
of 120 response vectors. We fit a latent class model to these data using the HYBRIL
computer program (Yamamoto, 1987), obtaining the conditional probabilities—p(xIn)—
shown in Table 2, and the following vector summarizing the (estimated) population
distribution of stage membership:

p(M) = (Prob(Stage=0), Prob(Stage=I), ..., Prob(Stage=IV))
= (.257,.227,.163,.275,.078) .
[Table 2 about here]

Note that different types of items are differentially useful to distinguish among
children at different levels. E items, for example, are best for distinguishing Stage 0
children from everyone else. CD items, which would be dropped from standard tests
because their probabilities of correct response do not have a strictly increasing relationship
with total scores, help differentiate among children at Stages II, III, and IV.

Figure 5 depicts the state of knowledge about a child before observing any
responses using the conventions of the MUNIN figures. Just one item of each type is
shown rather than all four for simplicity. The corresponding status of an observable node
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(i.e., an item type) is the expectation of a corréct response from a child selected at random
from the population. The path from the stage-membership node to a particular observable
node represents a row of Table 2.

[Figure 5 about here]

Adaptive testing

Figure 5 represents the state of our knowledge about a child’s reasoning stage and
expected responses before any actual responses are observed. How does knowledge
change when a response is observed? One of the children in the sample, Douglas, gave an
incorrect response to his first S item. This could happen regardless of Douglas’ true stage;
the probabilities are obtained by subtracting the entries in the S row of Table 2 from 1.000,
yielding, for Stages O through IV, .667, .973, .116, .019, and .057 respectively. This is
the likelihood function for 1 induced by the observation of the response. The bulk of the
evidence is for Stages 0 and I. Combining these values with the initial stage probabilities
p(n) via Bayes theorem yields updated stage probabilities, p(nlincorrect response to an S
item): for Stages O through IV respectively, .41, .52, .04, .01, and .01. Expectations for
items not yet administered also change. They are averages of the probabilities of correct
response expected from the various stages, now weighted by the new stage membership
probabilities. The state of knowledge after observing Douglas’ first response is depicted in
Figure 6 (see Appendix for details; also see Macready & Dayton, 1989.)

[Figure 6 about here]

In a simulation of adaptive testing, we updated our knowledge about Douglas one
response at a time, at each step looking at his actual response to an item expected to most
substantially reduce our uncertainty about his stage membership. Figure 7 charts

probabilities of stage membership for Douglas after each of the first ten items, showing that
we quickly converge to Stage 0.

[Figure 7 about here]
Extending the paradigm

The balance beam exemplar illustrates the challenge of inferring states of
understanding, but it addresses development of only a single key concept. A major thrust
of our proposal is to characterize interconnections among distinct lines of development.




This section takes a small step in this direction by discussing a hypothetical extension to the
exemplar, namely, the ability to carry out the arithmetic operations needed to calculate
torques. For illustrative purposes, we simply posit a skill to carry these calculations out
reliably, either possessed by a child or not. Obviously states of understanding could be
developed in greater detail here.

Calculating and comparing torques to solve the “conflict” problems characterizes
Stage IV. But if a child at Stage IV cannot carry out the calculations reliably, his pattern of
correct and incorrect responses would be hard to distinguish from that of a child in Stage
III. Although the two children might answer about the same number of items correctly, the
instruction appropriate for them would differ dramatically. And children at any stage of
understanding of the balance beam might be able to carry out the computational operations
in isolation. The goal of the extended system is to infer both balance-beam understanding
and computational skill. To make the distinctions among states of understanding in this
extended domain, we introduce two new types of observations:

1. Items isolating computation, such as “Which is greater, 3x4 or 5x27’
2. Probes for introspection about solutions to conflict items: “How did you get your
answer?”’ '

Figure 8 offers one possible structure for this network. Others could be entertained,
and in practice one would compare the degree to which they accord with observed data. To
keep the diagram simple, only one balance-beam task each for an S and a CS task are
illustrated. E and D items would have the same paths as the S task, and CD and CE tasks
would have the same paths as the CS tasks. Also, the paths from Stage 0, I, and I
indicators to balance beam tasks are not drawn in. The structure of paths, but not
necessarily the values, would be the same as those connecting the Stage JII indicator to
those tasks.

[Figure 8 about here]

There are three kinds of unobservable variables in the system. The first group
expresses level of understanding in the balance beam domain. It proves convenient to
express stage membership in terms of dichotomous indicator variables for each stage,
because of the special relationship of Stage IV to computational skill. Second is the ability
to carry out the calculations involved in computing torques. The third concerns the
integration of balance-beam understanding and calculating proficiency. Specifically, we
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posit an indicator for whether a child both is in Stage IV and possesses the requisite
computational skills. Other features of the network worth mentioning are as follows.

1. The probabilities of the pure computation items depend on the unobservable
computation variable only; they are conditionally independent of level of balance
beam understanding.

2. The correctness aspect of an answer has only two possibilities, right or wrong, but

an explanation can fall into five categories corresponding to levels of
understanding. A Stage III child might give an explanation consistent with Stages
0, L 11, or I1I, but would not give a Stage IV explanation. Theory thus posits that
the conditional probability of a Stage K response from a Stage J child 1s zero if
K>J. Conditional probabilities for K<J might be estimated from data or based on
experts’ experience. It may turn out, for example, that the most likely explanation
for an E task from people at Stage IV would probably be a Stage II explanation: “It
balances because both the weights and distances are equal.”

3. For children in Stages O through III, both the right/wrong answers and the “How”
answers to balance beam tasks depend only on level of understanding. Because
they do not realize the connection between the problems and the torque calculations,
their responses to the balance beam tasks are conditionally independent of their
computational skill, even on items for which that skill is an integral component of
an expert solution.

4. For children in Stage IV, right/wrong answers to conflict items depend on the
understanding/computation integration variable, but “How” answers depend only
on understanding. A child in Stage IV with low computational skill can thus be
differentiated from a child in Stage Il by his higher probabilities of giving Stage IV
explanations and incorrect answers to pure computation problems.

Discussion

This conceptual framework described above holds the promise of extending and
clarifying standard educational measurement practices in several ways:

Connections with instruction can be forged more easily than with standard tests,
because the focus is no longer on how many questions a student can answer, but how they
answer them. In medical diagnosis, different diseases gave rise to similar results in certain
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tests; in education, so too can different approaches lead to similar test scores for students.
But accounting for the patterns of performance, especially if probing adaptively, can
pinpoint the areas which need attention to best improve performance.

Student reports can be provided at varying levels and highlighting different features
of a student’s status. Of particular importance to the student and the teacher are reports in
terms of levels or stages of understanding of key concepts, since this is the level at which
instruction is aimed. For the quality control purposes of administrators, however, one
could predict a student’s performance on a standard set of tasks in the domain—say, a
“market basket” of tasks that, ideally, every student should eventually be able to handle.

Use of different strategies or mental models can be accommodated in an inference
network. This can take the form of either a single strategy/mental model choice for all tasks
in a class, as studied by Mislevy and Verhelst (1990), or strategy/model switching from
one task to another (as in Snow & Lohman, 1984). The nature and the strength of
inferences one can draw will depend on the potential observational senings. With rich
information, such as verbal protocols or partial solutions, it may be possible to characterize
the range of solution methods the student has available and the conditions under which he
employs them.

Testing “higher-order thinking” can be accomplished by including unobservable
nodes for connections among more basic facts or concepts, and observable nodes that
correspond to tasks for which the relationships of interest are critical. Because such tasks
might well be open-ended and approachable in a variety of ways, the possibility of
alternative solution strategies would need to be built into the network.

Adaptive testing can be carried out among concepts, not just for a single concept.
IRT applications of adaptive testing are based on the one-to-many relationships that are
appropriate for determining overall levels of proficiency, but inadequate for understanding
connections among concepts. The inference network facilitates stepping variously
throughout a domain, gathering information about critical domains by presenting tasks that
call for varying combinations of key skills.

Handling atypical knowledge configurations or observational patterns can be
accomplished by incorporating nodes analogous to the “Other” disease state in MUNIN » r
the catch-all IRT class in Yamamoto’s (1987) Hybrid model. An “Other” state of
understanding is a mechanism for capturing observational patterns that do not accord with
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those specifically built into the network. A situation-sensitive student report might be
generated in an instructional system when such a node becomes promiﬁent, signalling that
more intelligence than is embodied in the system is needed to figure out what this student is
doing, and decide what to do about it.

Conclusion

Learning can be enhanced by a unified conceptual franvework for instruction,
testing, and reporting, because only in such a framework can coherent feedback loops be
constructed. This presentation has focused on the educational measurement aspectof a
system built on this premise. The recent introduction of measurement models built around
states of understanding, and of inferential techniques to connect such pieces into networks
that describe domains of school learning, provide a foundation for improved educational
practice in this manner.
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Apbendix
Equations for the Latent Class Model
The Model

Let 1} = (Mg,...N4) denote the stage of understanding of a child, with nx=1 if he or
she is in Stage k and 0 if not. Letnt = (%g,...,T4) denote the population proportions of
children in these classes; that is, Tx = p(Mx=1). Let x; represent a response to Task j, 1 if

correct and O if not; j runs from 1 to 24. The conditional probabilities of correct response
are Prob(x;=1inx=1), or Pjk for short. P denotes the matrix ((P)). A vector of item
responses, X = (X1,...,.Xx24) i8 assumed to have the following probability conditional on
Stage membership:

p(xmg=1) = n P (1-Pj)t .
i (1)

Similar expressions are assumed to hold for subsets of responses as well, regardless of the
order in which they are observed.

The marginal probability of a response vector is an average of terms like (1),
weighted by the population probabilities of stage membership:

4

p(x) =Y, pxink=1) mk.
k=0 2

Let X denote the matrix of response vectors of a sample of N respondents. For a generic
pattern X¢ , let ng be the number of respondents producing this pattern. The probability of

X as a function of P and ®© has the form

PXIPm) = C [ | pxo™e,
£ 3

where C does not depend on P or . Once X has been observed, (3) can be interpreted as
a likelihood function, and maxima may be found with respect to P and 7.

Because N is only 120 in the balance beam example, a number of constraints were
introduced so that stable estimates would be obtained. Many could be relaxed or removed
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with larger samples. The results reported in Table 2 represent the best-fitting result among
several models with similar numbers of constraints. The Pjks that appear as .333 in Table
1 were fixed at that value. All four items of a given type were constrained to have the same
Pxs. Fora given column, all Pjks in cells that correspond to 1’s in Table 1 were
constrained to be equal to a single estimated value. Any cells in that column that
correspond to 0’s were constrained to its comp. ‘ment.

Adaptive Testing

The maximum likelihood estimates of P and & were treated as known true
parameter values during simulated adaptive testing. The uncertainty in these values could
be taken into account, but we have avoided the complication for this demonstration.

Before observing any responses from a given child, the expected value of his 1 is
the population value n. The expected value of a response to a particular item j is obtained
analogously to (2), simplified to a single, as yet unobserved, response:

p(xj=1) = Y, p(xj=1Mx=1) pk=1)
k

=Y Pjx p(i=1) .
k 4

Suppose that Item g is administered to a particular examinee, and the value of xg,
either O or 1, becomes kncwn. How is this information propagated through the network?
First, using Bayes theorem, we update probabilities for his 1. For k=0,...,4,

p(xgnk=1) p(Mx=1)

Y pxgny=1) pn=1)
h 5)

p(Mx=1lxg) =

This gives new probabilities that the examinee is in each of the possible stages. These are
in turn reflected in new expectations for items not yet administered by replacing p(Mx=1) in
(4) with p(Mk=1Ixg) to obtain

p(Xj=1|Xg) = z p(Xj=ll‘nk=l) p(nk-:llxg) .
X ©)

This process can be repeated with additional items presented one at a time. Let Xg

represent a partial response sequence; Item s+1 is next administered to form Xg41. Then
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p(xs+1= 1 lle= 1 )P(le=1 lxs)

P(T]k=1lxs+1) = ’
P(Xs+1=1Mh=1)p(Mn=1Ixs)
h )]

and, for items not yet presented,

P(xj=1lxgy) = Z p(xj=1Ini=1) pi=1ixg,1) -
k (®)

Selecting which item to present next and deciding when to stop depends on
probabilities for 1. In this paper we have addressed only the case in which no decision-
making cost structure is available, and we address only the goal of minimizing uncertainty
about 7. This can be accomplished by minimum entropy adaptive testing. Entropy is a -
measure of randomness. For the five-class balance beam problem, the maximal value of
entropy occurs when probabilities of all five classes are equal, and the minimal value

occurs when the probability of one particular stage is one. The general formula for entropy
after having observed xg is

E(xs)=- Y, p(Mi=1Ixs) log[p(ni=1ixg)] .
k &)

After having observed x, one can evaluate the expected entropy associated with the
administration of any remaining item j as

H xs"\(xj=0)] p(xj=0lxs) + E[xs"\(xj=1)] p(x;=1ixs) (10)
The item that minimizes (10) is presented next.

It bears repeating that these formulae assume both that the model is correct and the
conditional probabilities are known with certainty. Violations of these assumptions
generally degrade knowledge about an examinee’s state, making (5) and (8) in particular
overly optimistic. Work remains to be done, in studying the robustness of the approach to
violations of the assumptions, learning how to minimize violations in practice, and
modifying the model or the conditional probabilities to mitigate inferential errors in the
presence of violations.
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TABLE 1

Theoretical Conditional Probabilities—
Expected Proportions of correct Response

Problem type Stage 0 Stage I Stage II Stage I11 Stage IV
E 333 1.000 1.000 1.000 1.000
D 333 1.000 1.000 1.000 1.000
S 333 .000 1.000 1.000 - 1.000
D 333 1.000 1.000 333 1.000
CS 333 .000 .000 333 1.000
CE 333 .000 .000 333 1.000
TABLE 2

Estimated Conditional Probabilities—
Expected Proportions of correct Response

Problem type Stage 0 Stage I Stage II Stage 111 Stage IV
E 333% 973 .883 981 .943
D 333% 973 .883 981 943

S .333% .026 .883 981 943
D 333% 973 .883 .333% 943
CS 333% .026 116 333% 943
CE .333% .026 116 .333* 943

* denotes fixed value
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FIGURE 2
The MUNIN Network: After Selected Observations

(From Andreassen et al., 1987)
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When the blocks are removed, will the

beam tip left, tip right, or stay flat?

Figure 3
A Sample Balance-Beam Task
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I[tem Type Sample Item Description

Equal problems (E), with
matching weights and lengths on
both sides. :

Dominant problems (D), with
unequal weights but equal
lengths.

Subordinate problems (S), with
unequal lengths but equal
S .
¢ weights.

Conflict-dominant problems (CD),
in which one side has greater weight,

CD the other has greater length, and the
A side with the heavier weight will go
¢ down.
' Conflict-subordinate problems
CS él I | IE | | (CS), in which one side has greater
weight, the other has greater length,
¢ A and the side with the greater length

will go down.

Conflict-equal problems (CE), in
which one side has greater weight,
the other has greater length, and the
beam will balance.

CE

:

Figure 4

Sample Balance Beam Items
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PLWN—O

Cognitive Level

Figure 5

Problem Type

E

CD

CS

Initial State in an Inference Network

for the Balance Beam Example
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Problem Type
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Cognitive Level

CS

CE

Figure 6
State of Knowledge about Cognitive Level

after an Incorrect Response to an S Item
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Representation of an Extended Balance-Beam Network
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